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Abstract

Audio-driven talking head synthesis is a critical task in dig-
ital human modeling. While recent advances using diffu-
sion models and Neural Radiance Fields (NeRF) have im-
proved visual quality, they often require substantial compu-
tational resources, limiting practical deployment. We present
a novel framework for audio-driven talking head synthesis,
namely Hierarchically Controlled Deformable 3D Gaussians
(HiCoDe), which achieves state-of-the-art performance with
significantly reduced computational costs. Our key contribu-
tion is a hierarchical control strategy that effectively bridges
the gap between sparse audio features and dense 3D Gaussian
point clouds. Specifically, this strategy comprises two con-
trol levels: i) coarse-level control based on a 3D Morphable
Model (3DMM) and ii) fine-level control using facial land-
marks. Extensive experiments on the HDTF dataset and addi-
tional test sets demonstrate that our method outperforms ex-
isting approaches in visual quality, facial landmark accuracy,
and audio-visual synchronization while being more computa-
tionally efficient in both training and inference.

Introduction
Audio-driven talking head synthesis, a classical task in dig-
ital human modeling, is widely used in digital broadcasting,
virtual reality (VR), and teleconferences. This cross-modal
task aims to modify facial expressions and lip movements in
the target video to match a given input audio clip while pre-
serving facial continuity and fine details like teeth structure.

Existing solutions for audio-driven talking head synthesis
can be broadly classified into two categories: 2D-based and
3D-based methods. Recent state-of-the-art 2D approaches
predominantly leverage advanced deep generative models,
particularly diffusion models (Rombach et al. 2022). While
these methods yield impressive visual fidelity, they often re-
quire substantial computational resources and suffer from
slow rendering speeds, limiting their practical applicabil-
ity. Similarly, cutting-edge 3D-based methods frequently
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Figure 1: Our HiCoDe method significantly outperforms the
state-of-the-art NeRF-based method, ER-NeRF (Li et al.
2023), in fidelity (highlighted with blue boxes), as well
as computational costs (about five times faster in training
and inference). Our model allows talking head synthesis us-
ing both self-identity audio and other identity audio. Please
zoom in for more details.

employ Neural Radiance Fields (NeRF) (Mildenhall et al.
2021), which are also computationally intensive. For in-
stance, training a NeRF-based talking head model can take
more than 8 hours on high-end GPUs (Li et al. 2023).
This poses significant challenges for deploying NeRF-based
methods in real-world applications. Therefore, the develop-
ment of a realistic and efficient audio-driven talking head
synthesis solution remains an open challenge.

In this paper, we address this challenge by proposing a
novel framework based on Deformable 3D Gaussians (Yang
et al. 2023), namely HiCoDe, which can significantly reduce
training and inference time while achieving better render-
ing quality. In a nutshell, our framework consists of four
basic components: i) audio encoding, ii) deformable 3D
Gaussians, iii) rendering, and iv) head-background composi-
tion, which is a novel combination of off-the-shelf methods.
However, a naive combination of these components proves
ineffective due to an inherent mismatch between the sparse
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audio features and the dense 3D Gaussian point clouds.
This mismatch significantly impairs the efficacy of audio-
driven facial expression control, resulting in suboptimal per-
formance. To fix this mismatch, we draw inspiration from a
key insight that although 3D Gaussians are dense, the head
they represent is constrained to a specific identity and the
facial expressions are sparse. Thus, we propose to decou-
ple head identity from facial expressions and use the input
sparse audio to only control similarly sparse facial expres-
sions. Accordingly, we propose a novel hierarchical con-
trol strategy that effectively bridges input audio with 3D
Gaussians: at the coarse level, we utilize 3D Morphable
Model (3DMM) (Blanz and Vetter 2003) parameters as a
bridge, capitalizing on their ability to generate smooth fa-
cial animations; at the fine level, we incorporate facial land-
marks for precise local adjustments. This hierarchical strat-
egy is motivated by the complementary strengths of these
two representations: 3DMM offers robust global control but
suffers from limited expressiveness due to its constrained
set of base models, while facial landmarks provide high-
precision local control but lack comprehensive structural in-
formation. By synergizing these complementary attributes,
our method achieves both coherent global animation and nu-
anced local expressiveness. Extensive experimental results
on HDTF (Zhang et al. 2021) and two testing sets (Li et al.
2023; Ye et al. 2023b) demonstrate that our method achieves
state-of-the-art performance in terms of visual quality, fa-
cial landmark accuracy, and visual-audio synchronization,
and is more computationally efficient in training and infer-
ence. We acknowledge a concurrent work, GaussianTalker
(Cho et al. 2024), which also explores the application of de-
formable 3D Gaussians for audio-driven talking head syn-
thesis. While this approach represents a significant step in
the field, it relies on a straightforward attention mechanism
to modulate 3DGS attributes using audio features. This is
suboptimal as it uses sparse audio features to control the
dense 3D Gaussian point clouds, producing artifacts in out-
put videos. In contrast, our proposed hierarchical control
strategy addresses these limitations, offering more stable and
visually coherent results.

In summary, our main contributions are as follows:

• We propose a novel framework for audio-driven talk-
ing head synthesis based on deformable 3D Gaus-
sians, namely HiCoDe, which generates realistic and
computationally-efficient facial animations.

• We propose a novel hierarchical control strategy that ef-
fectively bridges input audio with 3D Gaussians, com-
prising three components: i) a landmark-based attention
mechanism, ii) a landmark-based fine-grained control
strategy, iii) and a 3DMM-based coarse control strategy.

• Extensive experiments on the HDTF and other test sets
demonstrate that our method greatly outperforms exist-
ing ones in both visual quality and computational cost.

Related Work
2D-Based Talking Portrait Synthesis. Early 2D-based ap-
proaches (Prajwal et al. 2020; Jamaludin, Chung, and Zis-
serman 2019; Chen et al. 2019) relied on image-based con-

straints to model mouth shapes. For example, some meth-
ods (Xie et al. 2021; Zhou et al. 2020; Suwajanakorn, Seitz,
and Kemelmacher-Shlizerman 2017) utilized facial land-
marks to control facial key points, enabling audio-driven fa-
cial animation. However, these approaches often introduce
additional errors and result in blurry and distorted generated
outputs. Recently, there are several 2D methods based on
diffusion models (Shen et al. 2023; Stypułkowski et al. 2024;
Yu et al. 2023). However, they require significant compu-
tational resources and are slow in rendering, limiting their
practical applicability.

3D-Based Talking Portrait Synthesis. There are two ma-
jor types of 3D-based methods. Between them, the first
type relies on 3D parametric facial models that capture
the geometric and textural information of the face, such as
3D Morphable Models (3DMM) (Blanz and Vetter 2003)
and FLAME (Li et al. 2017). For example, Lu, Chai, and
Cao (2021) proposed a method where audio features are di-
rectly mapped to the facial parameters of a model to ren-
der and synthesize the corresponding person’s face. Song
et al. (2022) proposed a method to enhance the expres-
siveness of the facial animation parameters by decoupling
identity information from the parameters. However, due to
the limitations of their rendering approaches, these methods
struggle to generate detailed facial animations. The second
type is based on Neural Radiance Fields (NeRF) (Mildenhall
et al. 2021) and has been very successful. For example, Rad-
nerf (Tang et al. 2022) decomposes the human body into two
parts, namely the head and the torso, and reconstructs them
using separate NeRF models. The audio input is then con-
nected through a neural network. ERNerf (Li et al. 2023) im-
proves the control method by incorporating attention mecha-
nisms and enhances rendering details using triplanes. Gene-
Face (Ye et al. 2023b) addresses Radnerf’s average face is-
sue by incorporating three-dimensional facial landmark in-
formation. GeneFace++ (Ye et al. 2023a) further addresses
the problem of mapping one audio input to multiple facial
expressions. However, these methods are computationally
heavy and also struggle to generate detailed facial anima-
tions because aligning multiple mappings is very challeng-
ing. To address these issues, we propose incorporating 3D
Gaussian Splatting (3DGS) (Kerbl et al. 2023) as the back-
bone for 3D-based talking portrait synthesis. Concurrent
with our work, GaussianTalker (Cho et al. 2024) also uses
3DGS but employs a simple attention module to connect au-
dio features and 3DGS attributes, resulting in jitter and gaps
between the generated face and background. Therefore, con-
trolling the deformation of 3DGS point clouds with audio
features remains a challenge.

3D Gaussian Splatting. It is a novel explicit 3D recon-
struction approach (Kerbl et al. 2023) that is significantly
faster to train than NeRF. Specifically, it uses a 3D Gaus-
sian representation to reconstruct the content of objects and
achieves high rendering speeds through splatting-based ren-
dering, which has been applied to a variety of 3D reconstruc-
tion tasks.
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Figure 2: Overview. Left: Our framework consists of four basic components: i) audio encoding, ii) deformable 3D Gaussians,
iii) rendering, and iv) head-background composition, which is a novel combination of off-the-shelf methods. However, making
such a combination work is non-trivial. Addressing this challenge, we propose a novel Hierarchical Facial Expression Control
(HFEC) strategy that effectively bridges input audio with 3D Gaussians: at the coarse level, we utilize 3D Morphable Model
(3DMM) (Blanz and Vetter 2003) parameters as a bridge, capitalizing on their ability to generate smooth facial animations; at
the fine level, we incorporate facial landmarks for precise local adjustments. Right: Detailed structure of our HFEC module.

Preliminaries
3D Gaussians. Following the 3DGS framework, we use a
set of N 3D Gaussian spheres gsi (i ∈ {1, 2, 3, ..., N}) to
represent the scene at each frame, achieving real-time pho-
torealistic rendering via differentiable rasterization:

gsi = (li, ri, si, oi, ci) (1)

where li ∈ R3 denotes location, ri ∈ R4 denotes rotation,
si ∈ R3 denotes scale, and oi ∈ R denotes opacity and
ci ∈ R3 denotes color. We represent the learned gsi after
training as its canonical form:

gsicn = (licn, r
i
cn, s

i
cn, o

i
cn, c

i
cn) (2)

3D Gaussian Rendering. According to (Zwicker et al.
2001), the resulting 3D Gaussians can be projected onto a
2D image plane I , where differential rendering is applied to
each pixel using the following 2D covariance matrix Σ

′
:

Σ
′
= JV ΣV TJT (3)

where J is the Jacobian matrix approximating the affine pro-
jection transformation; V denotes the view matrix that trans-
forms points from world coordinates to camera coordinates;
Σ represents the original covariance matrix of the 3D Gaus-
sians. To facilitate the learning of 3D Gaussians, Σ is further
decomposed using a rotation matrix R and an anisotropic
scaling matrix S:

Σ = RSSTRT (4)

where R and S are constructed with the rotation ri and scale
si of each 3D Gaussian sphere gsi, respectively. During ren-
dering, we stack the m closest Gaussians at each pixel of

according to depth order, forming the composite color for
that pixel as a weighted blend of contributing Gaussians:

cpixel =

m∑
j=1

ωjcj =

m∑
j=1

αj

j−1∏
k=1

(1− αk)cj (5)

αj = sigmoid(oj)e−
1
2 (lpixel−lj)TΣ

′
(lpixel−lj) (6)

where lpixel is the location of the pixel on 2D image plane,
and α denotes the view-dependent opacity.

Method
Following previous works (Fan et al. 2022), we define
audio-driven talking head synthesis as modifying the facial
expressions and lip movements in a given target video to
match a given input audio clip. In this work, we propose to
solve this task with a novel framework based on Deformable
3D Gaussians (Yang et al. 2023), featuring a hierarchical
facial expression control strategy based on facial landmarks
and the 3D Morphable Model (3DMM).

Framework Overview
As shown in Fig. 2, our framework consists of four basic
components: i) audio encoding; ii) deformable 3D Gaus-
sians; iii) rendering; and iv) composition of the generated
head and background. We will briefly introduce them be-
low and then detail our hierarchical facial expression con-
trol strategy in the following subsections.
Audio Encoding. Following (Fan et al. 2022), we feed the
input audio to a pre-trained self-supervised speech model,
HuBERT (Hsu et al. 2021), to extract robust acoustic fea-
tures from unlabeled speech corpora at each timestamp t.
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Deformable 3D Gaussians. To achieve a more refined and
faster generation of controllable human faces, we draw in-
spiration from (Yang et al. 2023) and decouple facial motion
from model geometry. Specifically, we represent the geom-
etry of the 3D face model with a point cloud and learn a
deformation network F∆ to predict its motion, i.e., the off-
set between the point cloud attributes (ri, si, li) at time t and
those of its learned canonical form:

F∆(l
i
cn, 3dmm(t), lmds(t)) = (∆rit,∆sit,∆lit) (7)

where licn denotes the location of gsi in its learned canon-
ical form, 3dmm(t) denotes the control signal produced
by our novel audio-to-3DMM module, and lmds(t) denotes
the control signal produced by our novel audio-to-landmark
module. Then, we have:

rit = ricn +∆rit, s
i
t = sicn +∆sit, l

i
t = licn +∆lit (8)

Rendering. We render the 3D Gaussians at time t using the
same process described in Preliminaries, where (rit, s

i
t, l

i
t)

are obtained from Eq. 8, and oit = oicn, cit = cicn are obtained
from their learned canonical form.
Head-background Composition. Given rendered 3D Gaus-
sians representing a reenacted head at time t, we employ a
pix2pix-inspired (Isola et al. 2017) approach to seamlessly
composite the rendered image onto the corresponding input
video frame, synthesizing the final output frame of the talk-
ing head animation. Empirically, we observed that our ap-
proach effectively addressed the discontinuities and ghost-
ing artifacts produced by end-to-end reenactment models at
composition boundaries.
Remark on 3DGS Initialization. A well-chosen initializa-
tion for the point cloud can provide the model with more
prior knowledge, aiding in the optimization process. To bet-
ter leverage facial prior knowledge, we propose a novel
3DGS initialization strategy that leverages monocular depth
estimation to incorporate effective facial priors. Specifically,
we first randomly select a frame from the input video and
estimate its depth map using Depth-anything (Yang et al.
2024). Then, we employ (Deng et al. 2019) to extract the
head region Rhead from the selected frame. Utilizing this in-
formation, we construct a dense 3D point cloud where each
point corresponds to a pixel in Rhead. The (x, y) coordi-
nates of each point are derived from the 2D pixel coordi-
nates in the image plane, while the z coordinate is obtained
from the corresponding depth value in the estimated depth
map. Accordingly, we initialize the point locations l with
(x, y, z). We initialize the other attributes r, s, o, c using the
same methods in the native 3DGS (Kerbl et al. 2023).

Hierarchical Facial Expression Control
The main challenge in incorporating 3DGS into audio-
driven talking head synthesis is to effectively control the fa-
cial expressions represented by 3D point clouds based on
the input audio cues, which is a key component of the de-
formation network F∆ (Eq. 7). This is particularly demand-
ing due to the inherent mismatch between the sparse audio
features and the dense 3DGS point clouds. We address this
by observing that although 3DGS point clouds are dense,

the head they represent is of the same identity for each
video and the facial expressions are sparse. Thus, we pro-
pose to decouple head identity from facial expressions and
use the input sparse audio to only control similarly sparse
facial expressions, which is consistent with the decoupling
of geometry and motion in deformable 3D Gaussians. In
our work, we implement this with the 3D Morphable Model
(3DMM) (Blanz and Vetter 2003) parameterized with zexp
and zid that separately represent expression and identity with
a set of bases.
[Coarse] Audio-to-3DMM Module. We feed the acoustic
features extracted by the Audio Encoding (HuBERT) com-
ponent of our framework into a Faceformer network (Fan
et al. 2022) to learn the mapping between input audio and
the expression parameters zexp ∈ R64 of the 3DMM model.
Following (Paysan et al. 2009), we obtain its corresponding
identity parameter zid ∈ R80 from the input video, which
remains static across frames. We denote the output of this
module as 3dmm(t) at time t.

However, while 3DMM is effective, its expressive power
is limited by the relatively small number of its base mod-
els (a.k.a., coarse), making it difficult to fit the fine-grained
details of facial animation. To address this limitation, we
propose a novel fine-grained audio-to-landmark module that
greatly enhances the details of output facial animations.
[Fine] Audio-to-Landmark Module. Unlike the 3DMM
that relies on base models, we first randomly select 20
frames from the input video and then employ the Google
MediaPipe (Lugaresi et al. 2019) to extract 478 facial key-
points from each frame. The facial keypoints of all 20 frames
are regraded as the identity information to generate audio-
driven facial landmarks. Specifically, we feed these 478×20
landmarks and input audio into a Faceformer network (Fan
et al. 2022) and generate the corresponding output land-
marks for each target frame respectively. We denote the out-
put of this module as lmds(t) at time t.

To maximize the efficacy of both the coarse 3DMM and
fine-grained landmark control signals in guiding the defor-
mation of 3D Gaussians, we introduce a novel hierarchical
control module as follows.
Hierarchical Facial Expression Control Module. The key
insight driving this module is the intrinsic nature of 3D
Gaussian primitives, defined by their mean and covari-
ance matrices. We leverage this characteristic by employ-
ing Adaptive Instance Normalization (AdaIN) layers (Huang
and Belongie 2017) to modulate these parameters, enabling
precise control over the spatial distribution and shape of each
Gaussian primitive. Accordingly, as Fig. 2 shows, this mod-
ule consists of three components:
• Landmark-based Attention Mechanism. Leveraging

the correspondence between landmarks (i.e., facial key-
points) and 3D Gaussian points, we enforce the landmark
constraints by introducing a novel landmark-based at-
tention mechanism whose mean attention matrix Wµ is
computed as follows:

Wµ = V × softmax(QT ×K)T (9)

where Q denotes the embeddings of 3D Gaussians’ loca-
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tions l, K and V are the embeddings of lmds(t), and ×
represents the matrix product. Similarly, we compute the
variance attention matrix Wσ as follows:

Wσ =
√

(V ◦ V )× softmax(QT ×K)T − (Wµ ◦Wµ),

(10)
where ◦ denotes the Hadamard product.

• Landmark-based Fine-grained Control. Then, we use
(Wµ,Wσ) to modulate Q, which is the embedding of in-
put 3D Gaussians l through an AdaIN layer:

y = AdaIN(l, (Wµ,Wσ)) = Wσ(
Q− µ(Q)

σ(Q)
) +Wµ

(11)
• 3DMM-based Coarse Control. Denote the mean and

standard deviation of 3dmm(t) as Zµ and Zσ , respec-
tively. We use them to modulate y through the other
AdaIN layer:

M = AdaIN(y, (Zµ, Zσ)) = Zσ(
y − µ(y)

σ(y)
)+Zµ (12)

Remark on the Choice of AdaIN. Empirically, we justify
our choice of AdaIN to modulate 3D Gaussians by compar-
ing it to alternative strategies, including simple concatena-
tion and attention-based methods. All these alternative meth-
ods failed to produce satisfactory results.

Model Training
The main components of our framework can be formulated
as independent sub-tasks and trained separately:
Audio-to-3DMM Module. This module is trained in a su-
pervised manner. To create the dataset, we first split a set of
given videos into paired audio and video streams; then, we
use a pretrained 3DMM model to extract the 3DMM param-
eters from each video frame; finally, we align the extracted
3DMM parameter sequences with their corresponding au-
dio clips. During training, the network is optimized using a
mean squared error (MSE) loss function:

L3DMM =
T∑

t=1

||3dmmgt(t)− 3dmm(t)||2 (13)

where t is the timestamp, and 3dmmgt(t) represents the
ground truth of 3DMM parameters.
Audio-to-Landmark Module. Similar to the training of the
audio-to-3DMM module, we create a paired audio and land-
marks dataset using Mediapipe (Lugaresi et al. 2019) to ob-
tain ground truth landmarks lmdsgt(t). We also use a mean
squared error (MSE) loss function for its training:

Llmds =
T∑

t=1

||lmdsgt(t)− lmds(t)||2 (14)

Expression-Controlled 3DGS Head Synthesis. We extract
the face regions from video frames and formulate the train-
ing of this component as a face image reconstruction task,
which consists of three stages:

• Initialization Stage (3,000 iterations): only the first video
frame is used. The deformation network is not activated.
Point adding and pruning operations are allowed.

• Deformation Stage (2,000 iterations): all video frames
are used. The deformation network is activated. Point
adding and pruning operations are allowed.

• Refinement Stage (15,000 iterations): all video frames
are used. The deformation network is activated. Point
adding and pruning operations are not allowed.

In all three stages, we employ the same loss function to op-
timize both the deformation network and 3D Gaussians:

L3DGS = λ1LRGB + λ2LSSIM + λ3LVGG + λ4LWING (15)

where
LRGB = ||If − Ifgt||+ ||Im − Imgt ||

LSSIM = ||SSIM(If )− SSIM(Ifgt)||

LVGG = ||FVGG(I
f )− FVGG(I

f
gt)||

+ ||FVGG(I
m)− FVGG(I

m
gt )||

LWING =
1

N
Wing(lmds, lmdsgt)

(16)

where If and Ifgt are the rendered face image and its corre-
sponding ground truth, respectively; Im is the mouth region
of If and Imgt is its corresponding ground truth; FVGG(·) cal-
culates the features from the first four layers of a pre-trained
VGG network (Sengupta et al. 2019); l and lgt are the land-
marks of If and Ifgt extracted by MediaPipe (Lugaresi et al.
2019), respectively; Wing(·) is the Wing loss (Feng et al.
2018) measuring the difference between two sets of land-
marks. Note that we have included additional loss terms for
the mouth regions to enhance their rendering quality.
Head-background Composition. We formulate the train-
ing of this module as a supervised image composition task
whose inputs are paired face and background images and
the output is their composited image. To effectively train it,
we employ a hybrid loss function comprising reconstruction
and GAN terms (Abdal, Qin, and Wonka 2019):

Lcomposition = Lrecon + LGAN (17)

where

Lrecon = λ4||I − Igt||2 + λ5||FVGG(I)− FVGG(Igt)||

LGAN =
∑
i

1

n(Di)
||Di(I)−Di(Igt)||1

+ logD(Igt) + log(1−D(I))
(18)

where I and Igt denote the composited image and its corre-
sponding ground truth; Di denotes the i-th layer in discrim-
inator D and n(Di) is the number of elements in it; LGAN
comprises a feature matching term and an adversarial term.

Experiments
Experimental Setup
Datasets. We aim to synthesize high-fidelity talking face im-
ages with various audio inputs, which necessitates the use
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Figure 3: Qualitative comparisons with SOTA methods on one ID from HDTF and Testset2. Geneface++ is excluded from
HDTF due to the unavailability of a pre-trained model. The fourth and last rows depict the mouth details of the row above,
where our method maintains consistent mouth shapes with the ground truth, and the teeth and lip details are noticeably superior.

of high-resolution datasets with dimensions of 512 × 512
or greater. Following (Li et al. 2023; Ye et al. 2023b,a;
Tang et al. 2022), we conduct experiments on three datasets:
HDTF (Zhang et al. 2021), Testset 1 (Li et al. 2023), and
Testset 2 (Ye et al. 2023b). For the HDTF dataset, we ran-
domly select 8 videos (corresponding to 8 distinct subjects)
with four videos of female subjects and four videos of male
subjects to ensure gender balance.

Data Preprocessing. All videos used in our experiments
are extracted at 25 frames per second (FPS), and the cor-
responding audio waveforms are sampled at 16 kHz. Sub-
sequently, we decompose the videos into individual frames
and perform the following preprocessing steps: i) Crop out
the subject’s head from each frame; ii) Resize the cropped

frames to a resolution of 512×512; iii) Segment the head re-
gion from the background and extract relevant masks. For
each video, we employ a 3D Morphable Model (3DMM) to
extract identity, expression, and pose parameters for every
frame. We also use mediapipe(Lugaresi et al. 2019) to ex-
tract the landmarks. We obtain the target person’s identity
parameters by averaging the identity parameters across all
frames in the video for the same individual. We use Depth-
Anything (Yang et al. 2024) to estimate the depth of the first
frame for each video ID.

Baselines and Evaluation Metrics. We choose two cat-
egories of baselines for comparison: i) 2D-based meth-
ods including Wav2Lips (Prajwal et al. 2020) and PC-
AVS (Zhou et al. 2021); ii) 3D-based methods, including
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Method HDTF Testset 1 Testset 2 Training Inference
SSIM↑ PSNR↑ LPIPS↓ LMD↓ AVConf↑ SSIM↑ PSNR↑ LPIPS↓ LMD↓ AVConf↑ SSIM↑ PSNR↑ LPIPS↓ LMD↓ AVConf↑ Time FPS

Ground Truth 1 N/A 0 0 8.960 1 N/A 0 0 8.610 1 N/A 0 0 8.442 - -
Wav2Lip 0.759 20.354 0.138 4.452 8.451 0.659 15.950 0.289 5.309 7.809 0.647 19.507 0.217 3.544 7.943 - 15
PC-AVS 0.756 22.483 0.154 4.926 8.694 0.787 21.579 0.140 6.678 7.544 0.757 22.557 0.156 4.771 8.809 - 31
ER-NeRF 0.932 30.214 0.035 2.914 6.936 0.965 35.221 0.018 2.619 5.708 0.819 28.297 0.060 2.850 6.309 3h 34
RAD-NeRF 0.939 29.911 0.063 2.976 6.480 0.959 33.849 0.039 2.824 6.644 0.838 28.715 0.133 3.207 6.443 8h 38
Geneface++ - - - - - - - - - - 0.825 28.763 0.119 3.019 7.229 22h 24
GaussianTalker 0.964 32.622 0.024 2.074 7.507 0.973 36.637 0.019 2.211 6.389 0.962 33.195 0.021 2.095 6.579 2h 98
Ours 0.983 37.767 0.013 1.819 8.428 0.983 38.107 0.010 1.528 7.961 0.985 39.892 0.014 1.216 7.861 30min 157

Table 1: Quantitative comparisons with state-of-the-art methods, including Wav2Lip (Prajwal et al. 2020), PC-AVS (Zhou et al.
2021), ER-NeRF (Li et al. 2023), RAD-NeRF (Tang et al. 2022), and GaussianTalker (Cho et al. 2024)). We evaluated Testset2
using Geneface++’s pre-trained model, as its training code is unavailable. Bold: best results; Underline: second-best results.

RADNerf (Tang et al. 2022), ERNerf (Li et al. 2023), Gene-
face++ (Ye et al. 2023a) and GaussianTalker (Huang et al.
2023). We divide the experiments into two parts: i) audio
inputs are from the same identity of training data; ii) audio
inputs are from identities different to training data. In the
experiments, we use the following metrics for evaluation: i)
PSNR, SSIM (Wang et al. 2004), and LPIPS (Zhang et al.
2018) that measure the visual quality of the generated im-
ages; ii) LMD (Chen et al. 2018) and Audio-Visual Confi-
dence (AVConf) (Chung and Zisserman 2017) that evaluate
the accuracy of face expression.

Quantitative Comparison
As shown in Table 1, our method outperforms state-of-the-
art ones on most metrics. The AVConf of our method is
marginally lower than that of Wav2Lip as Wav2Lip only
modifies the mouth region, which brings synchronization
advantages but leads to image blurring and pose fixation.
In contrast, our method modifies the entire facial region,
achieving a better balance between visual quality and syn-
chronization accuracy. For example, on HDTF, our method
achieves 0.019 higher SSIM and 0.155 lower LMD than the
second-best method GaussianTalker, demonstrating the su-
periority of our method in image synthesis quality and fa-
cial structure prediction accuracy. Also, our method demon-
strates significantly reduced training time and improves ren-
dering efficiency compared to NeRF-based methods.

Qualitative Comparison
Compared to existing methods, our approach excels in cap-
turing facial details and achieving synchronization with au-
dio input. Specifically, as Fig. 3 shows, i) PC-AVS loses
a significant amount of individual identity information and
produces blurry facial images. ii) Wav2Lip cannot synchro-
nize with facial poses; iii) ER-NeRF and RAD-NeRF syn-
chronize poorly with the input audio and produce artifacts,
especially in the teeth region, and blurry lips. They also
lose hair details at the boundaries of the head region. iv)
Geneface++ also synchronizes poorly with the input audio.
v) GaussianTalker, a concurrent work to our method, also
produces blurry mouths, synchronizes poorly with the input
audio, and loses hair details at the boundaries of the head
region. In contrast, our method demonstrates excellent per-
formance in capturing mouth details, synchronizes well with
the input audio, and preserves fine-grained details of the in-
put video (e.g., hair at the boundaries of the head region).
Similar conclusions also hold for audio inputs from differ-
ent identities (Fig. 1).

Method SSIM↑ PSNR↑ LPIPS↓ LMD↓ AVConf↑
w/o 3DMM 0.970 35.042 0.023 2.187 5.706
w/o Landmarks 0.979 37.564 0.018 1.868 7.460
None 0.969 32.614 0.027 5.281 3.597
w/ Addition 0.970 34.749 0.021 2.418 3.847
w/ Attention 0.968 33.511 0.026 2.966 2.934
w/ Random Init. 0.974 37.141 0.013 1.998 7.386
w/o HFEC 0.957 31.738 0.037 4.258 3.476
Ours (full) 0.984 38.285 0.011 1.511 8.403

Table 2: Ablation study on i) components of our hierarchical
facial expression control module, including “None” (rows 2,
3 and 4); ii) our choice of AdaIN against Addition and At-
tention as alternative strategies (rows 5 and 6); iii) our 3D
Gaussians initialization strategy against Random Initializa-
tion (row 7); iiii) our choice of using HFEC or not (row 8).

Ablation Study
First, we conduct an ablation study on our hierarchical fa-
cial expression control module. As shown in rows 2 and
3 of Table 2, both 3DMM and Landmark control signals
contribute effectively to our final solution. “None” (row 4),
i.e., controlling 3D Gaussians with audio features directly,
works the worst, further demonstrating the effectiveness of
our control strategy. Second, we conduct an ablation study
on the choice of AdaIN in the implementation of our hier-
archical control module. As shown in rows 5 and 6 of Ta-
ble 2, alternative strategies including addition and attention
fail to accurately control facial expressions (low LMD and
AVConf), which justifies our choice of AdaIN. Third, we
conduct an ablation study on our 3D Gaussians initialization
strategy. As shown in row 7 of Table 2, our initialization
significantly outperforms the original random initialization
strategy. Finally we attempt to directly concatenate the two
features and use them to control our model, which yields
much worse results, reinforcing the necessity of our idea.

Conclusion
We present a novel framework for audio-driven talking head
synthesis based on deformable 3D Gaussians, addressing the
challenge of achieving high visual quality while maintaining
computational efficiency. The key contribution of our work
is the hierarchical control strategy, which bridges the gap
between sparse audio inputs and dense 3D Gaussians and
leverages the complementary power of 3DMM and facial
landmark control signals. Our extensive experiments on the
HDTF dataset and additional test sets demonstrate that our
method outperforms existing state-of-the-art approaches in
both visual quality and computational costs.
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